

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

API Test

Test of API are implementend in the postman collection. Each request comes with the test script. What you need to do is run the test suite manually as follows:

	Open Postman Runner from file menu

	Select the collection

	Start

The first request gets the token using bob’s credential, and this user is part of the data seed.

Tests are processed in the sequential order, so POST request has to be done BEFORE GET if you want to save data then check otherwise its OK

d

Authentication

Authentication module allows to authenticate users in two ways:

	using RawCMS provider

	using external providers

RawCMS provider uses identity server four like internal IDP and exposes parts of its features.
The main target of RawCMS authentication is:

	identify a user and use user info to make different things (i.e., profile data and feature)

	use an external identity server to validate the user and get user info

	in case you do not have an identity server, RawCMS can act as an identity server

Please do not consider RawCMS as an identity server: we expose only minimal features to make the system autonomous.

RawCMS Provider

Like all configurable plugin [https://rawcms.readthedocs.io/en/latest/Configurable-Plugins/] of RawCMS, the authentication module can be configurable.

{
 "plugin_name": "RawCMS.Plugins.Core.AuthPlugin",
 "data": {
 "RawCMSProvider": {
 "Authority": "http://localhost:50093",
 "ClientId": "raw.client",
 "ClientSecret": "raw.secret",
 "ApiResource": "rawcms"
 }
 }
}

RawCMSProvider property allows us to configure IdentityServer; in the next paragraph, we can see how we can get a token for the user.

Users

When the user is stored locally, they saved into _users collection, with the following structure

{
 "_id": ObjectId("5bb7d9dae0fb5006ec9fe4cc"),
 "Id": null,
 "UserName": "bob",
 "NormalizedUserName": "BOB",
 "Email": "test@test.it",
 "NormalizedEmail": "test@test.it",
 "PasswordHash": "WFla",
 "Roles": ["Admin", "Writer", "Reader"],
 "Metadata": {},
 "Claims": [],
 "_createdon": "2018-10-05T23:38:34.5793965+02:00",
 "_modifiedon": "2018-10-05T23:38:34.5819543+02:00"
}

Metadata is a custom part where you can add custom user info.

Tests in standalone mode

0. Understand a little what to call

try to hit http://{host}/.well-known/openid-configuration to get info about available endpoints

1. Get the token

POST http://{host}/connect/token

Headers

Content-Type:application/x-www-form-urlencoded

Body

grant_type:password
client_id:raw.client
client_secret:raw.secred
scope:openid
username:bob
password:XYZ

Result

{
 "access_token": "....",
 "expires_in": 3600,
 "token_type": "Bearer"
}

2. check for introspection

POST http://{host}/connect/introspect

Headers

Authorization:Basic <xxx>
Content-Type:application/x-www-form-urlencoded

where <xxx> is the standard basic authentication using username=api resource name, password=client secret. To compute it manually, just make base64 of string “apireousource:clientsecret”, in case of default values (apiresource=rawcms, clientsecret=raw.secret) is:
cmF3Y21zOnJhdy5zZWNyZXQ=

Body

grant_type:password
client_id:raw.client
client_secret:raw.secret
scope:openid
username:bob
password:XYZ

Result

{
 "access_token": "....",
 "expires_in": 3600,
 "token_type": "Bearer"
}

2. check for identity

POST http://{host}/api/lambda/UserInfo

Headers

Authorization:Bearer <sdfghjk>

Response

{
 "IsAuthenticated": true,
 "nbf": "1541079731",
 "exp": "1541083331",
 "iss": "http://{host}",
 "aud": "rawcms",
 "client_id": "raw.client",
 "sub": "5bb7d830cc85173af89621d5",
 "auth_time": "1541079731",
 "idp": "local",
 "scope": "openid",
 "amr": "pwd"
}

External Providers

Like we have to see Authentication plugin is configurable. On configuration JSON you can add multiple
external provider for authenticating users.
For configure external providers use ExsternalProviders property.

{
 "plugin_name": "RawCMS.Plugins.Core.AuthPlugin",
 "data": {
 "RawCMSProvider": {
 "Authority": "http://localhost:50093",
 "ClientId": "raw.client",
 "ClientSecret": "raw.secret",
 "ApiResource": "rawcms"
 },
 "ExternalProviders": [
 {
 "Mode": "JWT",
 "SchemaName": "Auth0",
 "Authority": "https://dev-t61kk2b.eu.auth0.com",
 "Audience": "http://localhost:28436/",
 "UserInfoEndpoint": "https://dev-t61kk2b.eu.auth0.com/userinfo",
 "RoleClaimType": "permissions"
 }
]
 }
}

Configuration property

	Mode: identify the protocol used for retrieve token from an external provider(now set fixed JWT, on next release we’ll add new supported protocols)

	SchemaName: unique identifier of schema

	Authority: external authority

	Audience: allowed audience

	UserInfoEndpoint: endpoint of external provider for retrieve user profile info

	RoleClaimType: name of claim to use like role claim

Users

When you use an external provider, users have added automatically (at first login) on _user collection. In this case, you can manage the Roles of the user both internal that external.
External Roles are managed using RoleClaimType property and on the login process are added on context all roles added on _user collection property.

{
 "_id": {
 "$oid": "5e5df5bcae10c15718f8a3d9"
 },
 "UserName": "admin@test.com",
 "Email": "admin@test.com",
 "IsExternal": true,
 "Roles": ["Reader"],
 "_createdon": "2020-03-03T07:14:03.1276147+01:00",
 "_modifiedon": "2020-03-03T07:14:03.1276252+01:00",
 "NormalizedUserName": "ADMIN@TEST.COM",
 "NormalizedEmail": "ADMIN@TEST.COM"
}

AUTH0 like provider

In this chapter, we can see how to configure Auth0 [https://auth0.com/] like identity provider for single page application and integrate it with RawCMS.

	Create new application

[image: _images/auth0-new-application.png]New Application

	Configure application

	set Application type with Single Page Application

	set Allowed Callback URLs with SPA URL (http://localhost:8080/)

	Get parameters

	ClientId

	On advanced settings

	OAuth Authorization URL

	OAuth User Info URL

	Create new API
[image: _images/auth0-new-api.png]New Api

	Manage role for users [https://auth0.com/docs/microsites/manage-users/manage-users-and-user-profiles]

	Configure Authentication plugin and run RAWCms

	Get token using OpenId protocol

GET https://dev-t61kk2b.eu.auth0.com/authorize?client_id=wPCzMpFJRdjUmWCA2ssS4zrs23nnwBtb&response_type=token&redirect_uri=https://localhost:8080/&audience=http://localhost:28436/&scope=openid profile email

	Use JWT token for call RAWCms API

Background Jobs

It is possible to schedule background jobs inside the application. This job can be done in two ways.

	C# code using the plugin

	JS code using UI

C# code using the plugin

Inside your plugin you have to implement a Lamba with background job role. Here a sample:

 public class PingJob : BackgroundJobInstance

{
 public override string CronExpression => Hangfire.Cron.Minutely();

 public override string Name => "Ping Every minute";

 public override string Description => "Ping Every minute";

 protected ILogger logger;

 public PingJob(ILogger logger)
 {
 this.logger = logger;
 }

 public override void Execute(JObject data)
 {
 this.logger.LogInformation($"Job triggered, with data {data}");
 }
}

JS code using UI

This feature is in progess. It will be possible to add a schedulation to a js lambda from the user interface.

RawCms command line tool.

verbs:

login
insert
delete
replace
patch
list

Each verbs has some options:
…

Sample command:

List some collection data
list -c uno -v -p

with pagination:
list -c uno -v -p -n 3 -s 10

Get configuration for current user (token)
login -u bob -p XYZ -i raw.client -t raw.secret -s http://localhost:49439

Insert data from file
insert -c test -f c:\temp\test.json

Insert data from folder
insert -c test -d datalocal -r -p -v

Configurable Plugin

Each plugin can be configurable. Configurable plugins get configuration from the database.
User will edit configuration throught UI or db directly.

To enable configuration for a plugin, you must inherit IConfigurablePlugin.

This will let you:

	define default configuration (persisted at first usage): RawCMS will create a new instance of the configuration class and this will be stored to the db. Just fill the default values using default property values or costructors.

	get condfiguration from database: after the configuration is stored to database the first time, this will be reloaded. If you change it manually, after an application restart the value will be used.

Configuration is provided during startup so application must be restarted to reload (atm).

 To manage Entity Validation there are many FieldValidator used to check if a field value is valid for such schema definition.

Standard validator are shipped with RawCMS:

	Number

	Integer

	DateTime

	Text

you can add your own type, by just implementing the below class:

 public class MyTypeValidator: FieldTypeValidator
 {
 public string Type =>"MyTypeValidator";
 public List<Error> Validate(JObject input, Field field)
 {
 // DO CHECK HERE
 }
 }

the value of Type should match with the field type in schema validation.

 SchemaValidationLambda is the base type to hook validation. In the save pipeline validation is triggered so all derived class will be used to manage data validation.

Basic implementation:

 public class MySchemaValidationLambda: SchemaValidationLambda
 {
 public abstract List<Error> Validate(JObject input, string collection)
 {
 //check for data and return errors.
 }
 }

Entity Validation

RawCMS already ships a validator that analyzes schemas and reports errors. This is the “EntityValidation”.

EntityValidation reads json settings in _schema collection and validate data.

This lets you manage most common validation issues (field required, format validation, lenght, regexp) without writing code, and just with the configuration.

Manage

Through system tables you can set schema definition for collection.

In this examples Items collection is described by schema definition. As for all entities, POST, PUT, PATCH are supported.

List all schemas (POST)

Request

http://localhost:50093/system/admin/_schema

BODY
{
	"CollectionName": "Items",
	"AllowNonMappedFields": false,
	"FieldSettings":
	[
		{
			"Name" :"MyField",
	 "Required": true,
	 "Type": "text",
 "BaseType": "String",
	 "Options":
	 {
	 	"maxlength":200,
	 	"regexp":"allowed(.*)"
	 }
 },
 {
			"Name" :"MyNumberField",
	 "Required": false,
	 "Type": "number",
 "BaseType": "Int",
	 "Options":
	 {
	 	"max":200,
	 	"min":"allowed(.*)"
	 }
 },
]
}

Response

{
 "errors": [],
 "warnings": [],
 "infos": [],
 "status": 0,
 "data": true
}

List all schemas (GET)

REQUEST

http://localhost:50093/system/admin/_schema

RESPONSE

{
 "errors": [],
 "warnings": [],
 "infos": [],
 "status": 0,
 "data": {
 "items": [
 {
 "_id": "5b2c135fe207012bd07ff6e2",
 "CollectionName": "Items",
 "AllowNonMappedFields": false,
 "FieldSettings": [
 {
 "Name": "MyField",
 "Required": true,
 "Type": "text",
 "BaseType": "String",
 "Options": {
 "maxlength": 200,
 "regexp": "allowed(.*)"
 }
 },
 {
 "Name": "MyNumberField",
 "Required": false,
 "Type": "number",
 "BaseType": "Int",
 "Options": {
 "max": 200,
 "min": "allowed(.*)"
 }
 }
],
 "_createdon": "2018-06-21T23:06:39.7785905+02:00",
 "_modifiedon": "2018-06-21T23:06:39.783181+02:00"
 }
],
 "totalCount": 1,
 "pageNumber": 1,
 "pageSize": 20
 }
}

 Data processing Lambdas are used to alter regular save behaviour. Using such lambdas you can:

	compute some value

	add some validation step

	add per-user filters

	hide fields

	everithing else you need

Data saving pipeline

Data is saved using a save pipeline. Current implemented stages are:

	Pre-Save

	Post-Save

DataProcessLambda

Implementing a DataProcessLambda will let you choose in which phases you want to be triggered. Multiple phases can be binded as in example

 public class AuditLambda : DataProcessLambda
 {
 public override string Name => "LogLambda";
 public override string Description => "Log all";
 public override SavePipelineStage Stage {get { return SavePipelineStage.PreSave |SavePipelineStage.PostSave; } }
 public override void Execute(string collection, ref JObject Item)
 {
 //Log all
 }
 }

PostSaveLambda, PreaveLambda

This class is shortcut to bind presave or postsave event

Audit Lambda is a sample. It is triggered on before saving data and it set audit details.

 public class AuditLambda : PreSaveLambda
 {
 public override string Name => "AuditLambda";

 public override string Description => "Add audit settings";

 public override void Execute(string collection, ref JObject Item)
 {
 if (!Item.ContainsKey("_id") || string.IsNullOrEmpty(Item["_id"].ToString()))
 {
 Item["_createdon"] = DateTime.Now;
 }

 Item["_modifiedon"] = DateTime.Now;

 }
 }

Javascript Lambdas

For entities is possible define custom lambdas writed on javascript language on this events:

	PreSave

	PostSave

	PreDelete

	PostDelete

[image: assets/jslambdas.png]JS Lambdas

this is an example of javascript code for calculate preview book using ISBN code

var client = new RAWCMSRestClient();
var request = new RAWCMSRestClientRequest();
var bibkey = "ISBN:" + item.ISBN13;
request.Url = "https://openlibrary.org/api/books?format=JSON&bibkeys=" + bibkey;
request.Method = "GET";
var response = client.Execute(request);
var data = JSON.parse(response.Data);
//set result propoerty
item.PreviewUrl = data[bibkey].preview_url;

 To create a Lambda just implement a class. Class derived from Lambda will be activated and added to lambda bucket.

This example shows how to implemeent a simple REST Lambda

 public class DummyRest : RestLambda
 {
 public override string Name => "DummyRest";
 public override string Description => "I'm a dumb dummy request";
 public override JObject Rest(JObject input)
 {
 var result = new JObject();
 result["input"] = input;
 result["now"] = DateTime.Now;
 return result;
 }
 }

This can be reached at /api/lambda/dummyrest with body:

{
 "textfield":"text to get back",
}

and will return

{
 "input":
 {
 "textfield":"text to get back",
 },
 "now":"20108-05-05 22:22:22"
}

Deply on docker containers

You can start from the base docker-compose.
The following example creates and sets using local address and port mapping. On production you have to change them with public url. You can bind directly the port, even this may be tricky in case you want to use standard ports and the machine is not embedded for this application. Moreover, to enable https and get more control about traffic, it is suggested to run all the containers under a nginx proxy.

version: "3"
services:
 mongo:
 image: mongo
 environment:
 - MONGO_INITDB_ROOT_USERNAME=root
 - MONGO_INITDB_ROOT_PASSWORD=password
 - MONGO_INITDB_DATABASE=rawcms
 - MONGO_INITDB_USERNAME=dev
 - MONGO_INITDB_PASSWORD=password
 ports:
 - 28017:27017
 elasticsearchtest:
 image: elasticsearch:7.4.0
 environment:
 - discovery.type=single-node
 - http.cors.enabled=true
 - http.cors.allow-credentials=true
 - http.cors.allow-headers=X-Requested-With,X-Auth-Token,Content-Type,Content-Length,Authorization
 - http.cors.allow-origin=/https?:\/\/localhost(:[0-9]+)?/
 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
 ulimits:
 memlock:
 soft: -1
 hard: -1
 ports:
 - 9300:9200
 rawcms-app:
 image: arduosoft/rawcms-alpha
 depends_on:
 - mongo
 - elasticsearchtest
 ports:
 - "6580:80"
 - "6543:443"
 environment:
 - MongoSettings__ConnectionString=mongodb://dev:password@mongo:27017/rawcms
 - PORT=80
 - ASPNETCORE_ENVIRONMENT=Docker

Api will be available at http://localhost:3680 (api http://localhost:3580).

You can find documentationa about each docker image on docker hub [https://hub.docker.com/u/arduosoft].

Deploy on heroku

	Create an app, ie. your-demo-rawcms

	Set the environment variables. See later the variable mapping.

	Deploy using the heroku cli

Variables

ASPNETCORE_ENVIRONMENT=Docker
ASPNETCORE_SERVER_URLS=http://*:$PORT
MongoSettings__ConnectionString=<your connection string for mongodb service>
GOOGLE_ANALITYCS= <your api key on GA, optional>

deploy

heroku container:push web -a your-demo-rawcms
heroku container:release web -a your-demo-rawcms

Deploy using Kubernetes

A simple configuration for Kubernetes can be made using following yaml files

UI

save this file as rawcms.yml

apiVersion: v1
kind: Service
metadata:
 name: rawcms
 labels:
 run: rawcms
spec:
 type: ClusterIP
 ports:
 - port: 80
 targetPort: 80
 protocol: TCP
 name: http
 selector:
 run: rawcms

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: rawcms
spec:
 replicas: 1
 template:
 metadata:
 labels:
 run: rawcms
 spec:
 containers:
 - name: rawcms
 image: arduosoft/rawcms-alpha
 imagePullPolicy: Always
 ports:
 - containerPort: 80
 env:
 ## use secret on production
 - name: ASPNETCORE_ENVIRONMENT
 value: Docker
 - name: MongoSettings__ConnectionString
 value: <your connectionstring for mondodb service>

Ingress

save this snippet as ingress.yml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: ingress
 annotations:
 # kubernetes.io/ingress.class: addon-http-application-routing # this directive is for azure AKS
spec:
 rules:
 - host: <my url>
 http:
 paths:
 - backend:
 serviceName: rawcms
 servicePort: 80
 path: /

Deploy it

kubectl create -f rawcms.yml

kubectl create -f ingress.yml

You can create a kubernetes cluster from scratch using Microsoft Azure using this simple tutorial [https://medium.com/swlh/how-to-deploy-an-asp-net-application-with-kubernetes-3c00c5fa1c6e?source=friends_link&sk=de1e07739413943d6a03f8ae232e5408]

Manual deployment

If you want you can use the zip packages and deploy them directly. This practice is niether recommended nor supported.
The applications can be deployed as following:

	IIS configure IIS web side and use zip package content as resource. Change appsetting.json for configure application

	Kesterl run ‘dotnet RaWCms.dll’ from unziped package

Docker publish

publish on dist filder. This step produces binaries that will be published as artifact into docker images.

dotnet publish RawCMS\RawCMS.csproj -o ../dist

Build the image. This can be done as usual. This is part of the release on docker hub.

docker build -t rawcms .

Run locally on dokcer

To run the single container just use docker run. This requires all env parameters to have been passed as command line argument or env file.

docker run rawcms -p 80:8081

Run via docker compose. This is easy using docker-compose.yml into project root. running

local.bat

will start a volatile enviroment with mongodb+ rawcms (available on http://localhost:54321)

Dockerhub deployment

Through appeveyour project is compiled and deployed after a success pull request on master branch.

 CRUD Controller offers capability to save structured or non structured data based on mondodb collections.

Operations

Method	Operation	URL
————-	————-	————-
GET	retrieve data	/api/CRUD/entityname/
GET	retrieve data a single element	/api/CRUD/entityname/{id}
POST	Insert new item (no update)	/api/CRUD/entityname/
PUT	replace an element. Upsert mode.	/api/CRUD/entityname/{id}
PATCH	patch an element, only changed field are updated	/api/CRUD/entityname/{id}
DELETE	remove element	/api/CRUD/entityname/{id}

POST,PUT,PATCH Request

json { "field":"value", "field2":value, }

DELETE

No payload needed (id is from URL)

GET (single element)

no payload required

GET (search and list elements)

?rawQuery=optional_json_query&pageNumber=1&pageSize=20

 Lambda controller exposes HttpLambda or RestLambda to callers.

How to invoke lambda

api/lambda/lambdaname

Lambda must be invoked in POST.

{
 ** your custom json, everything can be intepreted by your lambda **
}

 #Frontend Lambdas

Lambdas

Lambdas allow for user’s to write custom logic on their entities. In RawCMS there is an interface to write Javascript code that will be executed.

Basic Examples

If you wanted a collection of books

If you were creating an entity that represents a book you could call an endpoint to get data about the title. In this example, our book entity has an ISBN13. I have defined a lambda that will make a call to the OpenLibrary API. The ISBN is passed to the endpoint and we process the result as needed. In this example, we are retrieving the preview_url and assigning it to the PreviewUrl of the entity.

var client = new RAWCMSRestClient();
var request = new RAWCMSRestClientRequest();
var bibkey = "ISBN:" + item.ISBN13;
request.Url = "https://openlibrary.org/api/books?format=JSON&bibkeys=" + bibkey;
request.Method = "GET";

// Process our response
var response = client.Execute(request);
var data = JSON.parse(response.Data);

// Set result property
item.PreviewUrl = data[bibkey].preview_url;

If you needed to find the GPS coordinates of a new shop

Another example is creating Shops in RawCMS. If you needed to get the latitude and longitude of a shop you could use a lambda instead of manually entering the data. In this case, there are multiple fields that can be used to find the physical location of the shop. In the lambda, we will do null checks to confirm if a field has a value. If it does we will pass it to the API to find the location.

var client = new RAWCMSRestClient();
var request = new RAWCMSRestClientRequest();
var filter = "";

if (item.ZipCode) {
 filter += item.ZipCode + " ";
}
if (item.City) {
 filter += item.City + " ";
}
if (item.Location) {
 filter += item.Location;
}

request.Url =
 "https://api.opencagedata.com/geocode/v1/json?key=b39e8ea6daff4f6d8d13d47223b90456&q=" +
 filter +
 "&pretty=1&no_annotations=1";
request.Method = "GET";

var response = client.Execute(request);
var data = JSON.parse(response.Data);
// Set result property
item.Latitude = data.results[0].geometry.lat;
item.Longitude = data.results[0].geometry.lng;

Available Clients

RAWCMSRestClient is the only client available to make requests with at this time. It has limitations it only supports GET and the format is JSON.

Full Text Plugin

This plugin enables full text capability.

By default a controller with basic full text feautures is added after installation (index creation, document CRUD on indexes, full text search).

This module can be used to store document, log collecting or indexing data. See example below for more info.

Document crud

See postman for api reference. Implemented APIs:

	create index

	add or update document

	delete

	search fulltext

Log collecting

Add a document on an index called logs.

Indexing data

Indexing data is out of the box. just add to the schema configuration what follows:

{
	...

 "FullTextPlugin" : {
 "IncludedField" : [
 "Field1",
 "Field2"
],
 "CollectionName" : "Items"
 }

}

Configuration

{
 "_id" : ObjectId("5db08f4a0337645f8853f848"),
 "plugin_name" : "RawCMS.Plugins.FullText.FullTextPlugin",
 "data" : {
 "Url" : "http://localhost:9300",
 "Engine" : 0
 }
}

Gateway

This plugin is an example of RAWCMS configurable plugin that enable basic Gateway capability like:

	Balancer

	Proxy

	Cache

	Logging

Configuration

Like all configurable plugin, graphQL have a json stored on _configuration collection

{
 "_id":"5db12fb8791f8e6574b62821",
 "plugin_name":"RawCMS.Plugins.ApiGateway.ApiGatewayPlugin",
 "data":{
 "Balancer":[
 {
 "Host":"localhost:64516",
 "Port":64516,
 "Scheme":"http",
 "Path":"^(.*)$",
 "Nodes":[
 {
 "Host":"test2.com",
 "Port":443,
 "Scheme":"https",
 "Enable":true
 },
 {
 "Host":"test1.com",
 "Port":443,
 "Scheme":"https",
 "Enable":true
 }
],
 "Policy":"RoundRobin",
 "Enable":false
 }
],
 "Proxy":[
 {
 "Host":"localhost:64516",
 "Port":64516,
 "Scheme":"http",
 "Path":"^(.*)$",
 "Node":{
 "Host":"test1.com",
 "Port":443,
 "Scheme":"https",
 "Enable":true
 },
 "Enable":false
 }
],
 "Cache":{
 "Enable":false,
 "Duration":600,
 "SizeLimit":67108864,
 "MaximumBodySize":104857600,
 "UseCaseSensitivePaths":false
 },
 "Logging":{
 "Enable":true
 }
 }
}

Balancer

	Enable: true or false, enable capability

	Host: RawCMS Host

	Port: RawCMS Port

	Scheme: RawCMS Scheme

	Path: Regular expression for filter balancer capability

	Policy: Balancer policy (RoundRobin, RequestCount)

	Nodes: Destination Node descriprion

	Host: Destination Host

	Port: Destination Port

	Scheme: Destination Scheme

	Enable: Enable or disable Node

Proxy

	Enable: true or false, enable capability

	Host: RawCMS Host

	Port: RawCMS Port

	Scheme: RawCMS Scheme

	Path: Regular expression for filter proxy capability

	Nodes: Destination Node descriprion

	Host: Destination Host

	Port: Destination Port

	Scheme: Destination Scheme

	Enable: Enable or disable Node

Cache
Implement cache in memory using Microsoft.AspNetCore.ResponseCaching [https://docs.microsoft.com/it-it/aspnet/core/performance/caching/middleware?view=aspnetcore-3.0] package.

Logging

	Enable: true or false, enable capability

GraphQL

GraphQL plugin uses graphql-dotnet [https://github.com/graphql-dotnet/graphql-dotnet] library for implementation.

This plugin is an example of RAWCMS configurable plugin

Configuration

Like all configurable plugins, graphQL has a json stored on _configuration collection

{
 "_id": "5c7155ece3b8be0f28787bf8",
 "plugin_name": "RawCMS.Plugins.GraphQL.GraphQLPlugin",
 "data": {
 "Path": "/api/graphql",
 "GraphiQLPath": "/graphql",
 "BuildUserContext": null,
 "EnableMetrics": false
}

with configuration you can change the path of GraphiQL exposed by RAWCMS.

Configure collection

For expose collection with GraphQL you should add configuration on schema collection.

[
 {
 "_id": "5c208138be03fb245cd6fde1",
 "CollectionName": "Currency",
 "AllowNonMappedFields": false,
 "FieldSettings": [
 {
 "Name": "CodCurrency",
 "Required": false,
 "Type": "String",
 "BaseType": "String",
 "Options": {
 "max": 5,
 "min": "allowed(.*)"
 }
 },
 {
 "Name": "Description",
 "Required": false,
 "Type": "String",
 "BaseType": "String",
 "Options": {
 "max": 350,
 "min": "allowed(.*)"
 }
 }
],
 "_createdon": "2018-12-24T07:48:23.9998791+01:00",
 "_modifiedon": "2018-12-24T07:48:24.0015599+01:00"
 },
 {
 "_id": "5c84be6853a5a042d016e5ab",
 "CollectionName": "Country",
 "AllowNonMappedFields": false,
 "FieldSettings": [
 {
 "Name": "CodCountry",
 "Required": false,
 "Type": "String",
 "BaseType": "String",
 "Options": {
 "max": 5,
 "min": "allowed(.*)"
 }
 },
 {
 "Name": "Currency",
 "Required": false,
 "Type": "Currency",
 "BaseType": "Object"
 },
 {
 "Name": "Description",
 "Required": false,
 "Type": "String",
 "BaseType": "String",
 "Options": {
 "max": 350,
 "min": "allowed(.*)"
 }
 }
],
 "_createdon": "2018-12-24T07:48:23.9998791+01:00",
 "_modifiedon": "2018-12-24T07:48:24.0015599+01:00"
 }
]

Supported BaseType are:

	Boolean

	Date

	Float

	Int

	ID

	String

	Object

to specify SubObject on base collection you can use Object base type and write related collection name on
Type field

Special Fields

All collections that define on schema automatically expose this field:

	Paging field

	pageSize (default 1000)

	pageNumber (1-base)

	_id (MongoDB key)

	rawQuery

rawQuery is special field for writing your custom MongoDB queries on collection

Example

Base url of graphQL is

POST http://{host}/api/graphql

while GraphiQL

http://{host}/graphihql

Suppose you have defined a previous schema, this is an example of graphql query.

1. simple query

Body

{
 'query':'{
 currency(pageSize:1, pageNumber: 1, codCurrency: "E"){
 description,
 codCurrency
 }
 }'
}

Result

{
 "data": {
 "currency": [
 {
 "description": "Euro",
 "codCurrency": "EUR"
 }
]
 }
}

1. rawQuery query

Body

{
	"query":"{
		currency(pageSize:1, pageNumber: 1, rawQuery: \"{'CodCurrency':{'$regex':'/*U/*','$options':'si'}}\"){
			description,
			codCurrency
			}
		}"
}

Result

{
 "data": {
 "currency": [
 {
 "description": "Euro",
 "codCurrency": "EUR"
 }
]
 }
}

1. query subtype

You can query subtype using this path (collectionName)_(fieldName)

Body

{
	"query":"{
	country(currency_CodCurrency:\"EUR\"){
		codCountry,
		description,
		currency{
			codCurrency,
			description
		}
	}
}"
}

Result

{
 "data": {
 "country": [
 {
 "codCountry": "IT",
 "description": "Italy",
 "currency": {
 "codCurrency": "EUR",
 "description": "Euro"
 }
 },
 {
 "codCountry": "SM",
 "description": "San Marino",
 "currency": {
 "codCurrency": "EUR",
 "description": "Euro"
 }
 }
]
 }
}

Log Collecting

This module enables the log collecting feature. Logs are isolated by application. A “default” application is created automatically.
Each application has a Public ID. This ID is the public key used for sending log through http request.

Note: for performance log must be added in bulk mode, one call with multiple rows.

POST /api/LogIngress/<APP-ID>

BODY
[
	{"Date":"2020-04-07T08:43:43.8494406+02:00","Message":"My message xyz","Severity":2},
	{"Date":"2020-04-07T08:43:44.9958044+02:00","Message":"My message xyz 2","Severity":3},
	{"Date":"2020-04-07T08:43:44.9958044+02:00","Message":"My message xyz 4","Severity":4}
]

Serverity values:

	ALL = 0,
	TRACE = 1,
	DEBUG = 2,
	INFO = 3,
	WARN = 4,
	ERROR = 5,
	FATAL = 6

Items are processed in background and may need up to a minute to be visible.

Read logs by API

Api logs are avaiable by regular fulltext api, like this:

GET /api/FullText/doc/search/log_<APPLICATION_PUBLIC_ID>?searchQuery=level:>=1 AND message:Prova&start=0&size=20

Build New Plugin

The project file template

Each plugin project must start from following project structure.

<Project Sdk="Microsoft.NET.Sdk">

	<PropertyGroup>
		<TargetFramework>netcoreapp2.1</TargetFramework>
		<IsPlugin>true</IsPlugin>
		<UseNETCoreGenerator>true</UseNETCoreGenerator>
	</PropertyGroup>

	<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">
		<OutputPath></OutputPath>
	</PropertyGroup>

	<ItemGroup>
		<PackageReference Include="IdentityServer4" Version="2.2.0" />
		<PackageReference Include="IdentityServer4.AccessTokenValidation" Version="2.6.0" />
		<PackageReference Include="IdentityServer4.AspNetIdentity" Version="2.1.0" />
		<PackageReference Include="IdentityServer4.Contrib.LocalAccessTokenValidation" Version="1.0.1" />
		<PackageReference Include="Jint" Version="2.11.58" />
		<PackageReference Include="McMaster.NETCore.Plugins" Version="0.2.4" />
		<PackageReference Include="McMaster.NETCore.Plugins.Sdk" Version="0.2.4" />
		<PackageReference Include="Microsoft.AspNetCore" Version="2.0.3" />
		<PackageReference Include="Microsoft.AspNetCore.Authentication.OpenIdConnect" Version="2.1.2" />
		<PackageReference Include="Microsoft.AspNetCore.Authorization" Version="2.1.2" />
		<PackageReference Include="Microsoft.AspNetCore.Identity" Version="2.1.3" />
		<PackageReference Include="Microsoft.AspNetCore.Rewrite" Version="2.2.0" />
		<PackageReference Include="Microsoft.Extensions.Configuration" Version="2.2.0" />

		<PackageReference Include="Microsoft.AspNetCore.Authorization" Version="2.1.2" />
		<PackageReference Include="Microsoft.Extensions.Options" Version="2.2.0" />
		<PackageReference Include="Microsoft.Extensions.Options.ConfigurationExtensions" Version="2.1.1" />
		<PackageReference Include="MongoDB.Driver" Version="2.6.0" />
		<PackageReference Include="MongoDB.Driver.Core" Version="2.6.0" />
		<PackageReference Include="Newtonsoft.Json" Version="12.0.3" />

		<PackageReference Include="Microsoft.AspNetCore.Diagnostics" Version="2.1.1" />
		<PackageReference Include="Microsoft.AspNetCore.Identity" Version="2.1.3" />
		<PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.1.1" />
		<PackageReference Include="Microsoft.AspNetCore.Server.IISIntegration" Version="2.1.1" />
		<PackageReference Include="Microsoft.AspNetCore.Server.Kestrel" Version="2.1.1" />
		<PackageReference Include="Microsoft.AspNetCore.Server.Kestrel.Https" Version="2.1.1" />
		<PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="2.1.1" />
		<PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="2.1.1" />
		<PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="2.1.1" />
		<PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="2.1.1" />
		<PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="2.1.1" />
		<PackageReference Include="Microsoft.Extensions.Logging.Console" Version="2.1.1" />
		<PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="2.1.1" />
		<PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink" Version="2.1.1" />
		<PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.1.1" />
		<PackageReference Include="NLog" Version="4.5.6" />
		<PackageReference Include="NLog.Config" Version="4.5.6" />
		<PackageReference Include="NLog.Web.AspNetCore" Version="4.5.4" />
		<PackageReference Include="Swashbuckle.AspNetCore" Version="2.5.0" />
		<PackageReference Include="Swashbuckle.AspNetCore.Swagger" Version="4.0.1" />
		<PackageReference Include="Swashbuckle.AspNetCore.SwaggerGen" Version="4.0.1" />
		<PackageReference Include="Swashbuckle.AspNetCore.SwaggerUi" Version="4.0.1" />
	</ItemGroup>

	<ItemGroup>
		<ProjectReference Include="..\..\RawCMS.Library\RawCMS.Library.csproj" />
	</ItemGroup>

	<Target Name="PublishUI" AfterTargets="Build">
		<RemoveDir Directories="$(OutDir)\UI" />
		<ItemGroup>
			<Files Include="$(ProjectDir)UI**" />
		</ItemGroup>
		<Copy SourceFiles="@(Files)" DestinationFiles="@(Files->'$(OutDir)\UI\%(RecursiveDir)%(Filename)%(Extension)')" />
	</Target>
</Project>

Folder Structure for the project

A standard structure for a plugin is the following

+	UI
+	Configuration
+	Extensions
+	Lambdas
+	Middlewares
+	Model
+	Services
PluginClass.cs

Plugin UI

The content of UI folder will be served as static file from the directory:

/app/modules/<modulename>

The placeholder is the slug of the plugin. Automatically is computed by the DLL name (RawCMS.Plugins.MyPlugin => myplugin), but can be specified on plugin config.

 Relation

Relation

Settings

on configuration schema you can define fields as follows:

reference 1 to many. into child schema collection you can link parent Collection

 {
 "Name" : "SingleReference",
 "Required" : false,
 "Type" : "relation",
 "BaseType" : "String",
 "Options" : {
 "Collection" : "Items",
 "Multiple" : false
 }
 },

reference many to many. on Parent schema collection you set the related items

{
 "Name": "MultipleReference",
 "Required": false,
 "Type": "relation",
 "BaseType": "String",
 "Options": {
 "Collection": "Items",
 "Multiple": true
 }
}

#api
On list api add the list of items to expand with the expando query string parameter

http://localhost:28436/api/CRUD/MasterItems/?expando=SingleReference

result will be placed into metadata section

{
 "errors": [],
 "warnings": [],
 "infos": [],
 "status": "OK",
 "data": {
 "items": [
 {
 "_id": "5dee8bc30b0734567c4c9c63",
 "MyField": "value",
 "MyNumberField": 20.0,
 "_createdon": "2019-12-09T19:00:35.2082894+01:00",
 "_modifiedon": "2019-12-09T19:00:35.2082977+01:00",
 "Prova": 23.0,
 "SingleReference": "5c717d4921919d4c88b34227",
 "_metadata": {
 "rel": {
 "SingleReference": {
 "_id": "5c717d4921919d4c88b34227",
 "MyField": "value",
 "MyNumberField": 3,
 "_createdon": "2019-02-23T18:05:13.4449161+01:00",
 "_modifiedon": "2019-02-23T18:05:13.4449262+01:00"
 }
 }
 }
 }
],
 "totalCount": 1,
 "pageNumber": 1,
 "pageSize": 20
 }
}

 Software to install

Software to install

	Visual Studio [https://visualstudio.microsoft.com/it/thank-you-downloading-visual-studio/?sku=Community&rel=16]

	Visual Studio Code [https://code.visualstudio.com/]

	ASP.NET Core SDK 3.1.200 [https://dotnet.microsoft.com/download/dotnet-core/3.1]

	Client Git(Fork [https://git-fork.com/] or GitExtensions [http://gitextensions.github.io/])

	NodeJS last LTS [https://nodejs.org/it/download/]

	MongoDB Server [https://www.mongodb.com/]

	MongoDB Compass [https://www.mongodb.com/] (optional but recommended)

	Postman [https://www.getpostman.com/downloads/] (optional but recommended)

Configuration

Initial Local Setup For contributors

Open the terminal, move to the docker folder of rawCms project, then digit docker-compose up.
Open the project on Visual Studio and start it. This will activate a mongodb installation, with a preconfigured database.
Please doublecheck the port number of appsettings.json file and the one exposed by docker compose. Must be the same.
Non docker user for user that do not have docker, you can install mongodb locally and change the port number according.

[image: _images/0.jpg]Docker RawCMS setup [http://www.youtube.com/watch?v=vFgC9N6bb3Q]

Setup postman

On Postman import the collection file rawCMS/docs/RawCMS.postman_collection.json.
After that, open any collection and copy the port number from the link (should be 28436).
Open rawCMS on Visual Studio, on the right in the solution explorer, right click on rawCMS, then property.
On the opened window, debug, search URL of the app, then delete the port number and past the Postman port.

Setup mongoDB

Launch rawCMS on VisualStudio, open MongoDB Compass and press connect.
Click on rawCMS->_configuration, then edit the plugin ending with AuthPlugin.
At the entry adminApiKey, change the type from null to string and set it to apikeyadmin.
Do the same for apiKey and set it to apikey, then Update.
Restart the app on Visual Studio.
On Postman click on the collection create user, on headers at the entry Authorization delete {{token}} and set it to Apikey apikeyadmin.
On the body, change name (example: “alice”), newPassword (example: “alice”) and set roles to “Admin”, then send.

 Authentications tests

 This is the test book.

Authentications tests

Feature | Description | Expected Result | Passed
————- | ————- | ————- | ————-
Apikey login | adding an apykey on auth config, you will be identified as ApiKey user (calling UserInfo lambda) | if key is empty, user wont be authenticated. If key is provided and matches authorize header, user is authenticated. | YES
Apikey Admin login | adding an apykey admin on auth config, you will be identified as ApiKey user (calling UserInfo lambda) | if key is empty, user wont be authenticated. If key is provided and matches authorize header, user is authenticated. | YES
Oauth login | enabling oauth configuration, user is able to be authenticate using password flow
- add user to _user collections (initial user can be used as template) - call userinfo | user will be authenticated. All user field will be available as user claims | YES
External login | setup a identity server, create user on it, get the token, then authenticate on rawcms | user will be authenticated. All user field exposed by userinfo of external service will be available as user claims | TODO

SchemaTest

Feature | Description | Expected Result | Passed
————- | ————- | ————- | ————-
CRUD | Test insert, update, delete on schema, using API | data will be saved | YES

CRUD Test

Feature | Description | Expected Result | Passed
————- | ————- | ————- | ————-
CRUD | Test insert, update, delete on collection, using API | data will be saved | YES
Automatic collection creation | inserting a item on a collection, if collection doesn’t exist, it is created | collection will be created | YES
Schema | Adding a row on _schemas table, schema will be used to validate data | it is not possible inserd unvalid data. it will be possible add valid data | YES
Alter query lambda | Creating a class that implements Alter query allow user to perfom data filtering | query returns expected data. lambda works only in collection that meets lambda configuration | TODO
Presave Lambda | adding a presave lambda, this lambda is called before saving data | it is possible to alter data ** before save ** | YES
Postsave Lambda | adding a postsave lambda, this lambda is called before saving data | it is possible to be notified after data is saved | YES

Admin Test

Feature | Description | Expected Result | Passed
————- | ————- | ————- | ————-
CRUD | save data on _ tables, | Same of public CRUD api | TODO
Authorization | test separation of public and admin CRUD. Test token usage | admin service are protected and cannot be called without apikey (if provided). public api cannot write into collection with _ prefix. admin api cannot write on public collections | TODO

GraphQL Test

Feature | Description | Expected Result | Passed
————- | ————- | ————- | ————-
Query | read data if mapped in schema | data will be diplayed| YES
Query filter | Search on entity | all fields are searchbele | YES
Query paging| make paged qury | return the subset of data | YES

Lambda

Feature | Description | Expected Result | Passed
————- | ————- | ————- | ————-
Http Lambda | create an http lambda | hitting lambda url produce expeced result | TODO
Rest lambda | create a Rest lambda | hitting lambda url produce expeced result | TODO

Extension

Feature | Description | Expected Result | Passed
————- | ————- | ————- | ————-
Plugin | Referencing a dll that implements plugin, plugin is loaded | See log from plugin | TODO
| | |

 On your local

On your local

	Check configuration.

API and UI are two different application and must be linked.

[image: _images/architecture.png]

In future api and UI will be separated to implement a standalone (but scalable or splittable) web application.
Now API and UI are separated and lives in different universes. That implies we need to configure two different settings

UI settings

/env/env.json

{
 "api": {
 "baseUrl": "http://localhost:28436" <== This is the API url without trailing slash at the end
 },
 "login": {
 "grant_type": "password",
 "scope": "openid",
 "client_id": "raw.client", <= this must match the value in _congif collection, the row for auth plugin. This is the default value, valid for dev
 "client_secret": "raw.secret" <= this must match the value in _congif collection, the row for auth plugin. This is the default value, valid for dev
 }
}

API settings

All settings are stored into _config table and are editable (doesn’t support the hot reload, so you need to reboot APPI after change).
The only settings we have on file is the connection string.

appsettings.json

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 },

 "PluginPath": "../../../Plugins",
 "MongoSettings": {
 "ConnectionString": "mongodb://localhost:27017/rawCms"
 }
}

The port or generally the baseUrl must point to the correct API url. Just check ISSExpress tray icon and open on browser to check it.

	Check API configuration.
Standard port from dev is 28436. You should run the RawCMS config and have this settings:

[image: _images/projectsettings.png]

[image: _images/runsettings.png]

	Log Files
the log file paths are configured in

/cong/NLog.Development.config

You can find here the location of log files.

	asking for help

	for specific question add a reply on issue thread is the perfect way. This makes the issue transparent and helps build the community

	for general question not related to the task, we can ask on gitter or general slack channel

	for problem with codebase or so on, just use direct communicaton. Of course, anything we learn of use must be added to doc

	any problem must be transformed into issues

	any news must be translated to documentation

Common errors

Failed to load resource: net::ERR_CONNECTION_REFUSED

the base url is not correct, or API is not started yet

 Tutorial

Tutorial

After have been followed the installation procedure (docker, docker-compose, Heroku or Kubernetes) RawCms is ready to use.

How to create an user

Open raw-cms-app under project root directory inside VSCode, open an inline terminal and run npm run serve to start the FE app.
Login with the default credentials (admin: “bob”, password: “XYZ”), then open the left menu and click on Users.
Press on plus-button and in the opened editor create an user, for example:

{
 "UserName": "joe",
 "Email": "test@test.it",
 "NewPassword": "joe",
 "Roles": ["Admin"]
}

NewPassword field is write-only and set the new password.

[image: _images/01.jpg]Picture of a comptuer screen showing a graph [http://www.youtube.com/watch?v=FuLP8WdUbew]

How to edit an entity

Open the left menu and click on Entities, press on the plus-button and give a name to the collection.
For add a field click on Add new field, choose a name, a type and characterisitcs.
When all the field have been created, save and click on Collection on left menu.
Choose the corresponding collection, click on the plus-button and populate the collection.

[image: _images/02.jpg]Blank form fields displayed on a computer screen [http://www.youtube.com/watch?v=omCS6M-WD80]

GraphQl test

On postman, click on GraphQL Query and now you can send queries.
Check the documentation of GraphQL (https://rawcms.readthedocs.io/en/latest/GraphQL/).

[image: _images/03.jpg]Postman, a program that tests APIs [http://www.youtube.com/watch?v=tiBim8w1_MU]

Swagger Edit

Click on Auth-Get Token, on Body change username and password according with your settings, then send request.
Copy the value of “access_token, then click on CRUD-GET.
Change the path of the url (example: http://localhost:28436/api/CRUD/Test), on Authorization change the type in Bearer Token and paste on Token the value copied first, now send.

[image: _images/04.jpg]Postman, a program that tests APIs [http://www.youtube.com/watch?v=vXEMtzfSk0U]

 Web app developer section

Web app developer section

RawCMS is shipped with a Web App that acts as a GUI to view and modify entities schema, as well to
configure the RawCMS instance. The web app will be pluggable in the future.

RawCMS GUI is an SPA built on top of:

	ES6 [http://es6-features.org/]

	VueJS [https://vuejs.org/]

	Vuetify [https://vuetifyjs.com]

	Vue-i18n [https://kazupon.github.io/vue-i18n/]

	Vuelidate [https://vuelidate.netlify.com/]

	Vuex [https://vuex.vuejs.org/]

All files of web app are under the raw-cms-app directory. In the following document, we will refer
to this directory as the root directory for the webapp, unless stated otherwise.

Prerequisites

To tinker with the web app, you must have this tools installed on your machine:

	NodeJS + npm (tested with version v10.15.2/6.4.1)

To install needed dependencies, just run npm i in the project root.

Start dev server

Just run npm run serve. After you edit a file, you have to manually refresh the browser page to
see the difference.

Build for deployment

Run npm run build. Files will go under the dist directory.

Architecture

All source files are under src directory.

Source file are splitted in modules, where each module contains a set of components with related
features. Each module has its own directory under src/modules/<module name>. Exception to this
rule are the entry points (src/index.html and src/main.js) and the root component under
src/app.

Components are usually splitted in 2/3 files: <name>.js (component logic),
<name>.tpl.html (component view) and optionally <name>.css (styles). The vast majority of
components are lazy loaded when the app needs them via an utility (more on that later).

Notable/config files

src/index.html and src/main.js are the main entry points where the whole application is
bootstrapped.

Under src/app there is the root component, with the app wireframe (top bar, left menu and central
view for content).

In the src/env directory there is an env.json file with environment constants.

In the src/utils directory there are JS common utilities.

Concerning src/config directory:

	i18n.js: contains vue-i18n initialization and an helper class to lazy load internationalized
messages for a module (see i18nHelper.load function in the file).

	router.js: contains vue-router initialization and routing settings. Internazionalization files
are loaded automatically if you follow the i18n assets convention explained in the
module section.

	vuetify.js: contains vuetify initialization.

	vuelidate.js: contains initialization code for vuelidate.

	vuex.js: contains init code for Vuex.

	raw-cms.js: it exports a commodity object RawCMS (also exposed on window) with a
loadComponentTpl function, which can used along with native VueJS async component loading to
obtain a full lazy-loading component experience, with view and logic files splitted on source
code. For an usage example, see one of the views under the core module. Note that this object
contains also the eventBus to dispatch events through all the application and can be augmented
at will to share objects/states within the application.

Module structure

We can use src/modules/core to explain a module structure:

	assets directory: contains all static files (e.g. images). It has a sub-directory i18n where
you should put i18n files with this filename template: i18n.<lang-code>.json.

	views directory: contains the components which acts as main views for the module.

	services directory: contains classes/helpers/utils providing business logic to the module components
and possibly to other modules.

	components directory: contains components which are logically contained in the module, but have been
splitted from the view for maintainability or can potentially be used also elsewhere. Each subdirectory
contains a component with its own 2/3 files.

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/0.jpg

_images/01.jpg

_images/02.jpg

_images/03.jpg

_images/auth0-new-api.png
New API

Name

RawCMS Api

Afriendly name for the APL.

Identifier

http://localhost:28436/|

Alogical identifier for this API. We recommend using a URL but note that this doesn't have to be a
publicly available URL, AuthO will not call your API at all This field cannot be modified.

Signing Algorithm

RS256 -

Algorithm to sign the tokens with. When selecting RS256 the token wil be signed with AuthO's private

key.
CREATE CANCEL

_images/auth0-new-application.png
